skip to main content


Search for: All records

Creators/Authors contains: "Wetherington, Maxwell"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2024
  2. Abstract MXenes are atomically layered carbides and nitrides of transition metals that have potential for micro-devices applications in energy storage, conversion, and transport. This emerging family of materials is typically studied as nanosheets or ultra-thin films, for which the internal defects are mostly nanoscale flake-flake interface separation type. However, micro-devices applications would require thicker films, which exhibit very high density of microscale pores. Electrical conductivity of thicker MXenes is significantly lower than nanosheets, and the physics of defect size and density control are also different and less understood. Current art is to perform high temperature annealing to improve the electrical conductivity, which can structurally alter or degrade MXene. The key contribution of this study is a room-temperature annealing process that exploits the synergy between electrical pulses and compressive mechanical loading. Experimental results indicate over a 90% increase in electrical conductivity, which reflects a decrease in void size and density. In the absence of compressive loading, the same process resulted in a conductivity increase of approximately 75%. Analytical spectroscopy and microscopy indicated that the proposed multi-stimuli process kept the MXene composition intact while significantly decreasing the void size and density. 
    more » « less
  3. Abstract The emergence of magnetism in quantum materials creates a platform to realize spin-based applications in spintronics, magnetic memory, and quantum information science. A key to unlocking new functionalities in these materials is the discovery of tunable coupling between spins and other microscopic degrees of freedom. We present evidence for interlayer magnetophononic coupling in the layered magnetic topological insulator MnBi 2 Te 4 . Employing magneto-Raman spectroscopy, we observe anomalies in phonon scattering intensities across magnetic field-driven phase transitions, despite the absence of discernible static structural changes. This behavior is a consequence of a magnetophononic wave-mixing process that allows for the excitation of zone-boundary phonons that are otherwise ‘forbidden’ by momentum conservation. Our microscopic model based on density functional theory calculations reveals that this phenomenon can be attributed to phonons modulating the interlayer exchange coupling. Moreover, signatures of magnetophononic coupling are also observed in the time domain through the ultrafast excitation and detection of coherent phonons across magnetic transitions. In light of the intimate connection between magnetism and topology in MnBi 2 Te 4 , the magnetophononic coupling represents an important step towards coherent on-demand manipulation of magnetic topological phases. 
    more » « less
  4. Abstract

    The great oxidation event (GOE), ~2.4 billion years ago, caused fundamental changes to the chemistry of Earth's surface environments. However, the effect of these changes on the biosphere is unknown, due to a worldwide lack of well‐preserved fossils from this time. Here, we investigate exceptionally preserved, large spherical aggregate (SA) microfossils permineralised in chert from the c. 2.4 Ga Turee Creek Group in Western Australia. Field and petrographic observations, Raman spectroscopic mapping, and in situ carbon isotopic analyses uncover insights into the morphology, habitat, reproduction and metabolism of this unusual form, whose distinctive, SA morphology has no known counterpart in the fossil record. Comparative analysis with microfossils from before the GOE reveals the large SA microfossils represent a step‐up in cellular organisation. Morphological comparison to extant micro‐organisms indicates the SAs have more in common with coenobial algae than coccoidal bacteria, emphasising the complexity of this microfossil form. The remarkable preservation here provides a unique window into the biosphere, revealing an increase in the complexity of life coinciding with the GOE.

     
    more » « less
  5. null (Ed.)
    Molybdenum (Mo) in marine sediments has been used as a paleoproxy to provide evidence for past oceanic euxinic and sulfidic conditions through its association with pyrite. Here, we examine the adsorption of Mo to the pyrite precursors mackinawite and greigite and assess the robustness of this association during iron sulfide phase transformations. Tetrathiomolybdate (MoS42–) adsorption experiments were done using mackinawite and greigite that had been characterized using powder X-ray diffraction and Raman spectroscopy. Adsorption of tetrathiomolybdate to mackinawite and to a primarily greigite mixture was similar. Both showed little change to the mineral phase upon adsorption. Relative to previously published data on pyrite, there was a much greater amount of Mo adsorption and a different mode of adsorption. A mackinawite/greigite mixture was also synthesized through an alternative method that more closely mimicked environmental conditions with a brief in situ aging to form an initial phase of iron sulfide, likely highly disordered mackinawite, and the near-immediate addition of MoS42–. X-ray photoelectron spectroscopy results support the adsorption of tetrathiomolybdate and its concomitant reduction to Mo(IV). The Mo-adsorbed mackinawite/greigite mixture was transformed through heating into a greigite/pyrite mixture while monitoring Mo release to the aqueous phase. Here, the sorption of Mo on the solid phase promoted the transformation of mackinawite into pyrite upon heating without diagenetic loss of Mo to the aqueous phase. These results support the early capture of MoS42– to less-stable forms of iron sulfide with negligible diagenetic loss during subsequent transformation. This work continues to point to Mo(VI) as a plausible oxidant of FeS to FeS2 within natural euxinic settings. 
    more » « less